

Abstracts

Broad-Band Small-Signal Impedance Characterization of Silicon (Si) P^{+/}-N-N^{+/} +/ IMPATT Diodes

M. Ohtomo. "Broad-Band Small-Signal Impedance Characterization of Silicon (Si) P^{+/}-N-N^{+/} +/ IMPATT Diodes." 1974 Transactions on Microwave Theory and Techniques 22.7 (Jul. 1974 [T-MTT]): 709-718.

A method is described that permits a broad-band small-signal characterization of an IMPATT diode mounted in a package. From automatic-network-analyzer measurements on a package-shaped metal dummy, an empty package, and the diode under test biased below and above breakdown, the method allows first determination of a coupling-circuit parameter, bonding-wire inductance, and diode series resistance, and then evaluation of junction admittance above breakdown. Experimental results on silicon (Si) p^{+/}-n-n^{+/} +/ diodes over 2.5-15 GHz are shown. Nearly frequency-independent bonding-wire inductance is observed. Avalanche frequency squared ($f_{sub a}/sub 2$) is found to be sublinear with respect to dc current density ($I_{sub d}$), possibly due to a variation of junction temperature ($T_{sub i}$). An experimental formula for $(f_{sub a}/sub 2) / (I_{sub d})$ is obtained in terms of $(T_{sub i})$. Detailed comparisons of the measured junction admittance with an existing analytical theory indicate a good agreement, if a suitable amount of saturation current is postulated, and also suggest that the estimated amount is in excess of the prebreakdown saturation current.

[Return to main document.](#)